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1. Entanglement in quantum mechanics

@ A quantum system is in an entangled state if performing a localised
measurement (in space and time) may instantaneously affect local
measurements far away.

A typical example: a pair of opposite-spin electrons:
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@ What is special: Bell’s inequality says that this cannot be de-

scribed by local variables.

@ A situation that looks similar to |¢)) but without entanglement is
a factorizable state:
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@ These examples are extremely simple but what happens in ex-
tended many-body quantum systems?

product state entangled state
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@ First of all, what provides a good measure of entanglement?
[Plenio & Virmani’05)
@ Entanglement monotone: no increase under LOCC
@ Invariant under unitary transformations
@ Zero for separable states
@ (Usually) Non-zero for non-separable states

@ Among others, the bipartite (or von Neumann) entanglement en-
tropy, the Rényi entropies and the logarithmic negativity are all
good measures of entanglement according to these properties.
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2. Entanglement Entropy of Connected Regions

@ Let us consider a spin chain of length N, subdivided into regions
A and A of lengths L and N — L
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then we define A

Entanglement Entropy

Sa=—Tra(palogpa) with pa=Trz(|¥)(¥])

|¥) is a pure state of the system, p4 the reduced density matrix
and A is the Hilbert space where A’s degrees of freedom live.

@ Other entropies may also be defined such as

Other Entropies
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3. Computation in QFT: Replication

@ The object Tryp’ may be interpreted as a “replica” partition
function:
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for n integer, in the scaling limit, Z,, is a partition function on
an n-sheeted Riemann surface:
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4. Replica Trick

@ We can express the bi-partite entanglement entropy directly in
terms of this partition function as

: d n
Sa=—-Tra(palogpa) =— lim —Tr4p}
n~>1d

n

@ However, when computing this limit we need to extend our notion
of “replica” ton > 1 and n € R.

@ This analytic continuation problem is a difficult and not generally
solved problem in 1+1D QFT.

o For this reason it is often easier (specially when using twist fields)
to study the Rényi entropies with n integer than the bipartite EE.
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5. Logarithmic Negativity (LN)

@ The LN is a good measure of entanglement in pure and mixed
states for non-complementary regions such as A and B [Vidal &
Werner’01; Zyczkowski et al.’98; Plenio’05; Eisert’06]
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Logarithmic Negativity

€ =log Trauslphp| with paup = Tre(|)(T))

e It involves the trace norm: Traus|p’? 5| = X, |\i| where )\; are
the eigenvalues of pﬁ{j B

@ T represents partial transposition in sub- bybtem B. Let e, eB be

(s Z

bases in A and B then: (e eB\pAUB|efelB> (e2ePlpauples jB>
The LN is basis-independent.
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6. Logarithmic Negativity (LN): Replica Approach

@ There is also a replica approach to the LN
[Calabrese, Cardy & Tonni’12]:

Replica Logarithmic Negativity

En =log Traus(p? 5)" then &= lim1 Eme]
n—

where &,, means the function &, for n even. This limit requires
analytic continuation from n even to n = 1.

@ There is also a partition function picture in this case. However,
the n-sheeted Riemann surface is more complicated:
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Fig. from Calabrese, Cardy & Tonni’12.
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7. Measures of Entanglement in QFT: Why Bother?

@ Entanglement growth is a key indicator of how effectively a quan-
tum system can be simulated on a computer.

@ Entanglement measures display remarkably universal features.

@ A prime example are conformal field theories (CFT): [Holzhey,
Larsen & Wilczek’94; Calabrese & Cardy’04; Calabrese, Cardy &

Tonni’12).
EE of one Interval and LN of Adjacent Regions
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where ¢ is a non-universal short-distance cut-off. ¢ is the central
change. The EE and LN display both universal behaviour and
dependence on universal features of the CFT.

@ The dynamics of entanglement holds key information about the
general dynamics of systems out of equilibrium.

o-Alvaredo, City, Unive of London https://olallaggi2l.weebly.com/



8. Universality at and beyond Critical Points [GS]

@ Short distance (CFT): Rényi Entropy for 0 < ¢ < &, logarithmic
behaviour [Holzhey, Larsen & Wilczek’94; Calabrese & Cardy’04].

(n+1)c log 4
12n €
where |0A| is the number of boundary points.

@ Large distance (massive QFT): 0 <« £ < £, saturation

Sn(l) ~ [04]
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Universal Exponential Corrections to Saturation

N
N 1
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Me is the mass spectrum, m; o< €1 is the smallest mass, N is the
number of particles in the spectrum. [Cardy, OC-A & Doyon’08;

Doyon’09].
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9. LN beyond Critical Points [GS]

o Adjacent Regions (massive QFT): 0 < £ < ¢,

Universal Corrections to Saturation of the LN

8i(€) ~ _Z log(mls +gsat Z fﬂ \/777105 ) (1 = (7 62 — QO

where m; o< €71 is the smallest mass scale in the theory, and gt
is a universal constant.
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@ Semi-infinite non-adjacent regions (massive QFT):

Universal Corrections to Saturation of the LN

N 2
ET~Y (";jrf) [Ko(mae)2 + Ko(maﬁgﬁ (Mab) _ g, (met)?

[Blondeau-Fournier, O.C-A & Doyon’16]
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10. Example: the Ising model
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@ We may carry out the
scaling limit of this
theory in two different
ways: o ool

@ Set h = 1 from the fz‘:ﬁ \
beginning: then ¢ =
oo and in the limit
N — oo this is a crit-
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ical model. o S(f) = 220003 10 £ 4 0.478551 for h = 1.
1 For h > 1 saturation is reached. [Vidal,
° Ta.ke h>1: & ocm Latorre, Rico & Kitaev’03; Its, Jin & Ko-
ﬁnlte but large.. Tak- repin’04; Cardy, OC-A & Doyon’08]
ing N — oo while ¢/¢
is finite we obtain Ising @ The corrections to saturation are exactly fit-
field theory. ted by §K0(2m£) [Levi, OC-A, Doyon’13]
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