

Lecture 2B: Form Factor Solution Procedure

Olalla A. Castro-Alvaredo

School of Mathematics, Computer Science and Engineering
Department of Mathematics
City, University of London

Galileo Galilei Institute, Arcetri, Florence
8-19 February 2021

1. Solving Watson's Equations

- For diagonal theories, the solution procedure is standard and easy to generalize to BPTFs.
- Since the replicas are mutually independent $S_{\mu_{1} \mu_{2}}(\theta)=\left(S_{a_{1} a_{2}}(\theta)\right)^{\delta_{i j}}$ where $a_{1,2}$ are particle indices and i, j are copy indices.
- The usual starting point is finding a minimal solution to the equations for two-particle form factors $F_{\min }^{\mathcal{T} \mid \mu_{1} \mu_{2}}\left(\theta_{1}, \theta_{2}\right)=: F_{\min }^{\mathcal{T} \mid \mu_{1} \mu_{2}}(\theta)$.
- Watson's equations can be written as:

$$
F_{\min }^{\mathcal{T} \mid \mu_{1} \mu_{2}}(\theta)=S_{\mu_{1} \mu_{2}}(\theta) F_{\min }^{\mathcal{T} \mid \mu_{2} \mu_{1}}(-\theta)=F_{\min }^{\mathcal{T} \mid \mu_{2} \mu_{1}}(-\theta+2 \pi i n)
$$

- For IQFT there is a systematic method for solving this type of equation. The starting point is an integral representation of the two-particle scattering matrix:

$$
\begin{gathered}
S_{a b}(\theta)=\exp \left[\int_{0}^{\infty} \frac{d t}{t} f_{a b}(t) \sin \frac{\theta t}{i \pi}\right] \Rightarrow \\
F_{\min }^{\mathcal{T} \mid a b}(\theta)=\mathcal{N} \exp \left[\int_{0}^{\infty} \frac{d t}{t} \frac{f_{a b}(t)}{\sinh (n \theta)} \sin ^{2} \frac{t(i \pi n-\theta)}{2 \pi}\right]
\end{gathered}
$$

for a, b in the same copy.

2. Towards a Full Solution

- Once we have a minimal two-particle solution it is easy to show that a function of the form

$$
F_{\min }^{\mathcal{T} \mid a_{1} \ldots a_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right) \propto \prod_{1 \leq i<j \leq k} F_{\min }^{\mathcal{T} \mid a_{i} a_{j}}\left(\theta_{i}-\theta_{j}\right)
$$

solves Watson's equations for any particle number. So a function of this type must be part of the general solution.

- We must now incorporate the necessary poles. Here we will just look at the case without bound states.
- For two particles the following function is what we need:

Two-Particle Form Factor

$$
F_{2}^{\mathcal{T} \mid a \bar{a}}(\theta)=\frac{\langle\mathcal{T}\rangle \sin \frac{\pi}{n}}{2 n \sinh \left(\frac{i \pi-\theta}{2 n}\right) \sinh \left(\frac{i \pi+\theta}{2 n}\right)} \frac{F_{\min }^{\mathcal{T} \mid a \bar{a}}(\theta)}{F_{\min }^{\mathcal{T} \mid a \bar{a}}(i \pi)} \quad \text { with } \quad F_{0}^{\mathcal{T}}=\langle\mathcal{T}\rangle
$$

- Satisfies all equations (exercise!). Has simple poles at $\theta=i \pi$ and $\theta=i \pi(2 n-1)$ on the extended physical sheet $\operatorname{Im}(\theta) \in[0,2 \pi n]$.The function containing the poles is even and $2 \pi n$-periodic in θ.
- We need a function with the following features:

1) Includes the product of minimal form factors.
2) Has the correct number of kinematic poles.
3) Apart from the minimal form factors, any other function involved must be symmetric $2 \pi n$-periodic in all rapidities.

General Ansatz for Particles in the Same Copy

$$
\begin{aligned}
& F_{k}^{\mathcal{T} \mid a_{1} \ldots a_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right)=H_{k}^{a_{1} \ldots a_{k}} Q_{k}^{a_{1} \ldots a_{k}}\left(x_{1}, \ldots, x_{k}\right) \\
& \times \prod_{1 \leq i<j \leq k} \frac{F_{\min }^{\mathcal{T} \mid a_{i} a_{j}}\left(\theta_{i}-\theta_{j}\right)}{\left[\left(x_{i}-e^{\frac{i \pi}{n}} x_{j}\right)\left(x_{j}-e^{\frac{i \pi}{n}} x_{i}\right)\right]^{\delta_{a_{i}, \overline{a_{j}}}}}
\end{aligned}
$$

- The functions Q_{k} must be combinations of elementary symmetric polynomials on the variables $x_{i}=e^{\frac{\theta_{i}}{n}} . H_{k}$ are θ_{i}-independent.
- Additional poles are present if there are bound states. They will take the form: $\left(x_{i}-e^{\frac{i \pi u_{a b}^{c}}{n}} x_{j}\right)\left(x_{j}-e^{\frac{i \pi u_{a b}^{c}}{n}} x_{i}\right)$.

4. Tackling Different Copies

- All form factors can be related to a form factor of particles in the same copy. Also the form factors of \mathcal{T}^{\dagger} are related to those of \mathcal{T}.
- This follows from permutation symmetry among copies and the properties of the BPTFs. For example:

Useful Properties

$$
\begin{aligned}
F_{2}^{\mathcal{T} \mid(a, i)(b, i+k)}(\theta) & =F_{2}^{\mathcal{T} \backslash(a, j)(b, j+k)}(\theta)=F_{2}^{\mathcal{T} \backslash(a, 1)(b, 1+k)}(\theta) \\
F_{2}^{\mathcal{T} \mid(a, 1)(b, j)}(\theta) & =F_{2}^{\mathcal{T} \backslash(b, 1)(a, 1)}(2 \pi(j-1) i-\theta) \quad \text { for } \quad j>1 \\
F_{2}^{\mathcal{T} \mid(a, i)(b, j)}(\theta) & =F_{2}^{\mathcal{T}^{\dagger} \mid(a, n-i)(b, n-j)}(\theta) \\
F_{2}^{\mathcal{T}^{\dagger} \mid(a, 1)(b, j)}(\theta) & =F_{2}^{\mathcal{T} \backslash(a, 1)(b, 1)}(2 \pi(j-1) i+\theta) \\
F_{k}^{\mathcal{T} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right) & =F_{k}^{\mathcal{T} \mid a_{1} \ldots a_{k}}\left(\theta_{1}^{j_{1}}, \theta_{2}^{j_{2}}, \ldots, \theta_{k}^{j_{k}}\right), \quad j_{1}>j_{2} \ldots>j_{k}
\end{aligned}
$$

- Here $\mu_{p}=\left(a_{p}, j_{p}\right)$ and $\theta^{j}=\theta+2 \pi i(j-1)$.
- A special feature of the twist field form factors is that they must all vanish at $n=1$ (except for $\langle\mathcal{T}\rangle \mapsto 1$).

5. Application: Sum Manipulation

- In Lecture 3A we will study the two-point function ${ }_{n}\langle 0| \mathcal{T}(0) \mathcal{T}^{\dagger}(\ell)|0\rangle_{n}$ and its form factor expansion. The sums below will feature:
- One-particle form factor:

$$
\sum_{a=1}^{N} \sum_{j=1}^{n} F^{\mathcal{T} \mid \mu}\left[F^{\mathcal{T}^{\dagger} \mid \mu}\right]^{*}=n \sum_{a=1}^{N}\left|F^{\mathcal{T} \mid(a, 1)}\right|^{2}=n \sum_{a=1}^{N}\left|F^{\mathcal{T} \mid a}\right|^{2}
$$

- Two-particle form factor

$$
\begin{aligned}
& \sum_{a_{1}, a_{2}=1}^{N} \sum_{j_{1}, j_{2}=1}^{n} F^{\mathcal{T} \mid \mu_{1} \mu_{2}}(\theta)\left[F^{\mathcal{T}^{\dagger} \mid \mu_{1} \mu_{2}}(\theta)\right]^{*} \\
= & n \sum_{a_{1}, a_{2}=1}^{N} \sum_{j=1}^{n} F^{\mathcal{T} \mid\left(a_{1}, 1\right)\left(a_{2}, j\right)}(\theta)\left[F^{\mathcal{T}^{\dagger} \mid\left(a_{1}, 1\right)\left(a_{2}, j\right)}(\theta)\right]^{*} \\
= & n \sum_{a_{1}, a_{2}=1}^{N}\left[\left|F^{\mathcal{T} \mid\left(a_{1}, 1\right)\left(a_{2}, 1\right)}(\theta)\right|^{2}+\sum_{j=2}^{n}\left|F^{\mathcal{T} \mid\left(a_{2}, 1\right)\left(a_{1}, 1\right)}(2 \pi i(j-1)-\theta)\right|^{2}\right] \\
= & n \sum_{a_{1}, a_{2}=1}^{N}\left[\left|F^{\mathcal{T} \mid a_{1} a_{2}}(\theta)\right|^{2}+n \sum_{j=1}^{n-1}\left|F^{\mathcal{T} \mid a_{2} a_{1}}(2 \pi i j-\theta)\right|^{2}\right]
\end{aligned}
$$

