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1. Exponential Corrections to Saturation

@ In this last two hours I will introduce two applications of the
techniques I have presented.

@ In this lecture we will consider corrections to the saturation of the
entanglement entropy of large subsystems in gapped systems.

@ Saturation is a feature of the entanglement entropy of 141D gapped
systems that has been mathematically proven by [Hastings’07] and
also shown numerically [Vidal, Latorre, Rico & Kitaev’'03] and an-
alytically [Calabrese & Cardy’04]

@ In the context of BPTFs saturation follows simply from clustering
of correlators:
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with (T) = m?**7a, and U,, = 2(1 —n)"loga,.

@ In the form factor context, this is just the first (leading) term in
the form factor expansion. What will other terms tell us?
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2. Exponential Corrections to Saturation

@ In [Cardy, OC-A & Doyon’08] we computed the leading correction
to saturation of the entanglement entropy.

Universal Correction to Saturation
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Me is the mass spectrum, my o< €71 is the smallest mass, N is the
number of particles in the spectrum.
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3. Two-Point Function Expansion

@ Recall that

S(¢) = — lim 8}5(") with  h(n) = £*27,(0[T(0)T 7 (¢)|0),,

n—1 n

@ The first few terms in our expansion are
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with e, (6) = m, cosh 6.

@ From here onwards we will consider a theory with a single particle
in the spectrum.
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4. Beyond Saturation: One-Particle Form Factor

@ For a theory with a single particle the one-particle form factor
contribution can be written simply as

 de n
nlBf [ §letmeont = 2| ] Ko(me).

with Fy(n) := 1T|1

@ When the one-particle form factor is non-zero (there are many
theories where it is zero by symmetry!), it provides the leading
correction to saturation of the two-point function (hence to the
Rényi entropies) .

@ However it vanishes under differentiation w.r.t. n and limit n — 1.
@ This is because Fi(n) « O((n — 1)) for n — 1 (we know that
Fi(1) =0).

@ This means that the one-particle form factors (if they are non-
vanishing) will provide the leading correction to the Rényi en-
tropies but no contribution to the EE.
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5. Two-Particle Form Factors

@ Recall our two-particle form factor sum

0> (B2 (0,n))* (Fy? (8,n)) = n |[F3L(0,n) P +n S |[FL (=6 + 2mi(j — 1),n)|?
j=1 j=2

n—1
= n(|B0,n)]* = [F31(=0,n)[*) +n > [F31(~0 + 2mij, m)|*
j=0

where we simplified F ' (0) := F1(0,n).

@ The derivative at n = 1 of the first term will be zero because
F31(0,1) = F}H(0,1)* = 0. So it will contribute to the Rényi
entropies but not to the entanglement entropy.
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6. Leading Correction to the Entanglement Entropy

@ In summary, we need to compute
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With9:91—92 andﬂ:91+92.

@ The integral in 8 can be carried out giving a Bessel function. So,
we end up with:
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@ In order to take the derivative, we need to somehow get rid of the
sum up to n — 1.

@ A well-known way of doing this is to use the cotangent trick.
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7. Cotangent Trick

@ The idea is that the sum may be replaced by a contour integral
i, %dzwcot(frz)s(z,a, n)
271

with s(z,0,n) | —60 + 2miz, n) |2, in such a way that the sum
of the residues of poles of the cotangent enclosed by the contour
reproduces the original sum.
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@ The red crosses are the poles of the cotangent at z = 1,2,...,n—1.
The blue crosses represent other poles due to the kinematic poles
of the function s(z,0,n) at z =4 £ ;% and 2 =n — 2 £ ;2.

@ We shift iL — iL — € so as to avoid the pole at z = n and include
z =0 (but this does not affect the result).
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8. Contributions to the Integral

@ Since s(z,0,n) decays exponentially as Im(z) — 400 so we can
show that the contributions to the contour integral of the horizon-
tal segments vanish.

@ The contribution of the vertical segments can be written as:
1 o0
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where f = 2miz and S(6) is the S-matrix. Here we used the
property s(z +n,0,n) = S(0 — 2mwiz)S(0 + 2mwiz)s(z,6,n).

@ Note that this is zero for free theories. Its derivative at n = 1 is
zero for similar reasons as before.

@ Finally we are left with the contributions from the residues of the
kinematic poles. They give:

0
tanh §Im (Fy' (=20 + im,n) — Fy' (=20 + 2min — im, n))
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9. Almost there...

@ The only two-particle contribution to the derivative comes from:
11 : 11 . ) 0
Im (F3y' (=20 + im,n) — Fy' (=20 + 2win — im,n)) tanh 3

@ Based on previous observations, it would seem that this should be

zero as F}1(0,1) = 0. However, something special happens to this
function as n — 1 and € — 0 simultaneously.
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@ Thesumn Z;L:_& |F3' (=0 + 2mij, n) ’2 for @ = 0 in the Ising model

(blue) and the sinh-Gordon model (red).
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10. Delta Function

@ Near § =0 and n =1:
0
Im (F211(—29 +im,n) — F3Y(—20 + 27win — im,n)) tanh 5

N_l( in(n—1)  im(n—1) )N7r2(n—1)
2 \2(0 +ir(n—1)) 2(0—in(n—1)) 2

5(0).

@ Putting this result back into the 6 integral and differentiating
w.r.t. n we obtain the two-particle form factor contribution:
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@ The result is striking for its simplicity. From the derivation we
see that it follows from the kinematic pole structure of the form
factors, which is universal.

@ For this reason the same result can be found even for non-integrable
141 dimensional models [Doyon’09].

@ This kind of phenomenon extends to higher terms in the form
factor expansion. We did a full analysis for the Ising model in
[OC-A & Doyon’09] (with and without a boundary).
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