

Lecture 3A: Exponential Corrections to Saturation

Olalla A. Castro-Alvaredo

School of Mathematics, Computer Science and Engineering
Department of Mathematics
City, University of London
Galileo Galilei Institute, Arcetri, Florence
8-19 February 2021

1. Exponential Corrections to Saturation

- In this last two hours I will introduce two applications of the techniques I have presented.
- In this lecture we will consider corrections to the saturation of the entanglement entropy of large subsystems in gapped systems.
- Saturation is a feature of the entanglement entropy of $1+1 \mathrm{D}$ gapped systems that has been mathematically proven by [Hastings'07] and also shown numerically [Vidal, Latorre, Rico \& Kitaev'03] and analytically [Calabrese \& Cardy'04]
- In the context of BPTFs saturation follows simply from clustering of correlators:

$$
\begin{aligned}
& \lim _{\ell \rightarrow \infty}\langle 0| \mathcal{T}(0) \mathcal{T}^{\dagger}(\ell)|0\rangle_{n}=\langle\mathcal{T}\rangle^{2} \Rightarrow \lim _{\ell \rightarrow \infty} S_{n}(\ell)=-\frac{c(n+1)}{6 n} \log (m \varepsilon)+U_{n} \\
& \text { with }\langle\mathcal{T}\rangle=m^{2 \Delta_{\mathcal{T}}} a_{n} \text { and } U_{n}=2(1-n)^{-1} \log a_{n} .
\end{aligned}
$$

- In the form factor context, this is just the first (leading) term in the form factor expansion. What will other terms tell us?

2. Exponential Corrections to Saturation

- In [Cardy, OC-A \& Doyon'08] we computed the leading correction to saturation of the entanglement entropy.

Universal Correction to Saturation

$$
S(\ell)=-\frac{c}{3} \log \left(m_{1} \varepsilon\right)+2 U_{1}-\frac{1}{8} \sum_{\alpha=1}^{N} K_{0}\left(2 \ell m_{\alpha}\right)+O\left(e^{-3 m_{1} \ell}\right)
$$

m_{α} is the mass spectrum, $m_{1} \propto \xi^{-1}$ is the smallest mass, N is the number of particles in the spectrum.

3. Two-Point Function Expansion

- Recall that

$$
S(\ell)=-\lim _{n \rightarrow 1} \frac{\partial h(n)}{\partial n} \quad \text { with } \quad h(n)=\varepsilon^{4 \Delta_{\mathcal{T}}}{ }_{n}\langle 0| \mathcal{T}(0) \mathcal{T}^{\dagger}(\ell)|0\rangle_{n}
$$

- The first few terms in our expansion are

$$
\begin{gathered}
{ }_{n}\langle 0| \mathcal{T}(0) \mathcal{T}^{\dagger}(\ell)|0\rangle_{n}=\langle\mathcal{T}\rangle_{n}^{2}+\sum_{\mu} \int_{-\infty}^{\infty} \frac{d \theta}{2 \pi} F_{1}^{\mathcal{T} \mid \mu}\left(F_{1}^{\mathcal{T}^{\dagger} \mid \mu}\right)^{*} e^{-\ell e_{\mu}(\theta)} \\
+\frac{1}{2} \sum_{\mu_{1} \mu_{2}} \int_{-\infty}^{\infty} \frac{d \theta_{1}}{2 \pi} \int_{-\infty}^{\infty} \frac{d \theta_{2}}{2 \pi} F_{2}^{\mathcal{T} \mid \mu_{1} \mu_{2}}\left(\theta_{1}-\theta_{2}\right)\left(F_{2}^{\mathcal{T}^{\dagger} \mid \mu_{1} \mu_{2}}\left(\theta_{1}-\theta_{2}\right)\right)^{*} e^{-\ell\left(e_{\mu_{1}}\left(\theta_{1}\right)+e_{\mu_{2}}\left(\theta_{2}\right)\right)} \\
+\cdots
\end{gathered}
$$

with $e_{\mu}(\theta)=m_{\mu} \cosh \theta$.

- From here onwards we will consider a theory with a single particle in the spectrum.

4. Beyond Saturation: One-Particle Form Factor

- For a theory with a single particle the one-particle form factor contribution can be written simply as

$$
n\left|F_{1}(n)\right|^{2} \int_{-\infty}^{\infty} \frac{d \theta}{2 \pi} e^{-\ell m \cosh \theta}=\frac{n}{\pi}\left|F_{1}(n)\right|^{2} K_{0}(m \ell)
$$

with $F_{1}(n):=F_{1}^{\mathcal{T} \mid 1}$

- When the one-particle form factor is non-zero (there are many theories where it is zero by symmetry!), it provides the leading correction to saturation of the two-point function (hence to the Rényi entropies).
- However it vanishes under differentiation w.r.t. n and limit $n \rightarrow 1$.
- This is because $F_{1}(n) \propto \mathcal{O}((n-1))$ for $n \rightarrow 1$ (we know that $\left.F_{1}(1)=0\right)$.
- This means that the one-particle form factors (if they are nonvanishing) will provide the leading correction to the Rényi entropies but no contribution to the EE.
- Recall our two-particle form factor sum

$$
\begin{aligned}
& n \sum_{j=1}^{n}\left(F_{2}^{1 j}(\theta, n)\right)^{*}\left(\tilde{F}_{2}^{1 j}(\theta, n)\right)=n\left|F_{2}^{11}(\theta, n)\right|^{2}+n \sum_{j=2}^{n}\left|F_{2}^{11}(-\theta+2 \pi i(j-1), n)\right|^{2} \\
& \quad=n\left(\left|F_{2}^{11}(\theta, n)\right|^{2}-\left|F_{2}^{11}(-\theta, n)\right|^{2}\right)+n \sum_{j=0}^{n-1}\left|F_{2}^{11}(-\theta+2 \pi i j, n)\right|^{2}
\end{aligned}
$$

where we simplified $F_{2}^{\mathcal{T} \mid 11}(\theta):=F_{2}^{11}(\theta, n)$.

- The derivative at $n=1$ of the first term will be zero because $F_{2}^{11}(\theta, 1)=F_{2}^{11}(\theta, 1)^{*}=0$. So it will contribute to the Rényi entropies but not to the entanglement entropy.

6. Leading Correction to the Entanglement Entropy

- In summary, we need to compute

$$
-\frac{1}{4} \lim _{n \rightarrow 1} \frac{\partial}{\partial n}\left(\int_{-\infty}^{\infty} \frac{d \theta}{2 \pi} \int_{-\infty}^{\infty} \frac{d \beta}{2 \pi} n \sum_{j=0}^{n-1}\left|F_{2}^{11}(-\theta+2 \pi i j, n)\right|^{2} e^{-2 m \ell \cosh \frac{\theta}{2} \cosh \frac{\beta}{2}}\right)
$$

with $\theta=\theta_{1}-\theta_{2}$ and $\beta=\theta_{1}+\theta_{2}$.

- The integral in β can be carried out giving a Bessel function. So, we end up with:

$$
-\lim _{n \rightarrow 1} \frac{\partial}{\partial n}\left(n \int_{-\infty}^{\infty} \frac{d \theta}{(2 \pi)^{2}} \sum_{j=0}^{n-1}\left|F_{2}^{11}(-\theta+2 \pi i j, n)\right|^{2} K_{0}\left(2 m \ell \cosh \frac{\theta}{2}\right)\right)
$$

- In order to take the derivative, we need to somehow get rid of the sum up to $n-1$.
- A well-known way of doing this is to use the cotangent trick.

7. Cotangent Trick

- The idea is that the sum may be replaced by a contour integral

$$
\frac{1}{2 \pi i} \oint d z \pi \cot (\pi z) s(z, \theta, n)
$$

with $s(z, \theta, n)=\left|F_{2}^{11}(-\theta+2 \pi i z, n)\right|^{2}$, in such a way that the sum of the residues of poles of the cotangent enclosed by the contour reproduces the original sum.

- The red crosses are the poles of the cotangent at $z=1,2, \ldots, n-1$. The blue crosses represent other poles due to the kinematic poles of the function $s(z, \theta, n)$ at $z=\frac{1}{2} \pm \frac{\theta}{2 \pi i}$ and $z=n-\frac{1}{2} \pm \frac{\theta}{2 \pi i}$.
- We shift $i L \rightarrow i L-\epsilon$ so as to avoid the pole at $z=n$ and include $z=0$ (but this does not affect the result).
- Since $s(z, \theta, n)$ decays exponentially as $\operatorname{Im}(z) \rightarrow \pm \infty$ so we can show that the contributions to the contour integral of the horizontal segments vanish.
- The contribution of the vertical segments can be written as:

$$
-\frac{1}{4 \pi i} \int_{-\infty}^{\infty}(S(\theta-\beta) S(\theta+\beta)-1) \operatorname{coth} \frac{\beta}{2} s(\beta, \theta, n) d \beta
$$

where $\beta=2 \pi i z$ and $S(\theta)$ is the S-matrix. Here we used the property $s(z+n, \theta, n)=S(\theta-2 \pi i z) S(\theta+2 \pi i z) s(z, \theta, n)$.

- Note that this is zero for free theories. Its derivative at $n=1$ is zero for similar reasons as before.
- Finally we are left with the contributions from the residues of the kinematic poles. They give:

$$
\tanh \frac{\theta}{2} \operatorname{Im}\left(F_{2}^{11}(-2 \theta+i \pi, n)-F_{2}^{11}(-2 \theta+2 \pi i n-i \pi, n)\right)
$$

- The only two-particle contribution to the derivative comes from:

$$
\operatorname{Im}\left(F_{2}^{11}(-2 \theta+i \pi, n)-F_{2}^{11}(-2 \theta+2 \pi i n-i \pi, n)\right) \tanh \frac{\theta}{2}
$$

- Based on previous observations, it would seem that this should be zero as $F_{2}^{11}(\theta, 1)=0$. However, something special happens to this function as $n \rightarrow 1$ and $\theta \rightarrow 0$ simultaneously.

- The sum $n \sum_{j=0}^{n-1}\left|F_{2}^{11}(-\theta+2 \pi i j, n)\right|^{2}$ for $\theta=0$ in the Ising model (blue) and the sinh-Gordon model (red).

10. Delta Function

- Near $\theta=0$ and $n=1$:

$$
\begin{gathered}
\operatorname{Im}\left(F_{2}^{11}(-2 \theta+i \pi, n)-F_{2}^{11}(-2 \theta+2 \pi i n-i \pi, n)\right) \tanh \frac{\theta}{2} \\
\sim-\frac{1}{2}\left(\frac{i \pi(n-1)}{2(\theta+i \pi(n-1))}-\frac{i \pi(n-1)}{2(\theta-i \pi(n-1))}\right) \sim \frac{\pi^{2}(n-1)}{2} \delta(\theta) .
\end{gathered}
$$

- Putting this result back into the θ integral and differentiating w.r.t. n we obtain the two-particle form factor contribution:

$$
-\frac{1}{8} K_{0}(2 m \ell)
$$

- The result is striking for its simplicity. From the derivation we see that it follows from the kinematic pole structure of the form factors, which is universal.
- For this reason the same result can be found even for non-integrable $1+1$ dimensional models [Doyon'09].
- This kind of phenomenon extends to higher terms in the form factor expansion. We did a full analysis for the Ising model in [OC-A \& Doyon'09] (with and without a boundary).

