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1. Entanglement Dynamics

@ What is it? The time evolution of some measure of entanglement
after a quantum quench.

@ A system prepared initially in the ground state of a hamiltonian
H()\g) time-evolves unitarily with a different hamiltonian H(\).

@ For one-dimensional quantum systems and for a particular mea-
sure, the entanglement entropy S(t), a lot is understood
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= Entanglement Dynamics [Calabrese & Cardy’05’06]

@ Argument: Quasi-particle pairs propagate with opposite momenta
after the quench
S(t) = At|t§% + B€|t>%

where A and B are theory-dependent, £ is the length of A, and v
the propagation velocity [Alba & Calabrese’17]
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2. Evidence and Further Studies

The quasi-particle picture has wide
support. [Fagotti & Calabrese’08]
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For the XY chain N
H = —JZ [U;G;+1 + hIU;” + hzaﬂ
j=1

H=- Z [ao'fcrfﬂ +bofol  + gaj-]

7=t In our papers we studied the quench
with a +b=1/2. of h, > 1 for h, = 0 (Ising mass
For b = 0 Ising chain. quench) and the quench of h, for
But other things can also happen...  h, =1 (Es Toda mass quench).
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3. Scaling Limit (Revisited)

@ Throughout this course we have taken the scaling limit from spin
chain models to IQFT a a given.

@ This connection is important not only conceptually but also in a
practical sense because any numerical tests of QFT predictions
are generally done on discrete models in the scaling limit.

@ For the model in the last slide, this scaling limit can be made a
little more precise:

N
H= —JZ [0707+1 + hao} + h.0j] A= AQCP_Al/dmdt (x,t)=Az [dxdto(z,1)
j=1
Ising Field Theory
A2 o hy
mo :=2J|1=h.|, hs=0, v:=2Ja
Es field theory ‘ Free massive fermions ‘
Minimal Fs Toda Field Theory
[Zamolodchikov’89)
8
QCP h.=1, A2 X hg, mo:=rKA®

o= A x (1—=h)
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4. Global Mass Quench and Entanglement Dynamics

@ Consider the entanglement of two

@ Consider now a global mass L. . .
semi-infinite regions:

quench mg +— m.

@ The entropy is defined as usual: A B
log(Tr A (p%
Sn(t) _ Og( rA(pA))
1—n

@ As usual, the Rényi entropies
can be expressed in terms of the
S(t) = lim Sy, (t) one-point function of a BPTEF:

n—1

_ log(e247,,(0|T(0,1)[0),,)
1—n

pa = Trp ((ifiLH(m) ‘0> <0|eth(m)) Sn (t)

@ H(m) is the hamiltonian of the
theory with mass m. @ |0), is the pre-quench ground
state in the replica theory.
@ |0) is the pre-quench ground state
of H(mo). @ Now this is a dynamical one-point

function.
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5. Quench Perturbation Theory

@ We need a technique to compute dynamical one-point functions.

@ One possibility is to generalize the perturbation theory proposed
in [Delfino’14] to the BPTF.

@ We start with an action
A= Aqcp — )\/d.ﬁ[dt o(z,t)

and consider a global quench whereby A — A+ §, at t = 0.

@ ) is the small perturbative parameter.
@ Then, at first order, the post-quench state can be approximated by
expanding |0) = S5, |0), where S5, = T exp (—idy [dxdt o(x,t))
F4p|a1“.ak(91 ek)*
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o where Eio = >, €i(0;) and Pyoy = Y, pi(#;) are the total energy
and momentum of the state.

@ The momentum constraint connects to the quasi-particle picture.
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6. Dynamic Expectation Values

@ From this formula it is then relatively easy to find the expectation
value of any local field.

o Defining §(0) := (0|0(0,)[0) — (0]0(0,0)[0) we have
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@ Once more form factors are the building blocks!

@ This is easily generalized to the branch point twist field.
[OC-A, Lencsés, Szécsényi & Viti’19]

@ In this case we only need form factors on one copy.
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7. Dynamics of Entanglement

@ The first few terms in the expansion read
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Damped Oscillations

+ O(63)
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@ This approach might lead us to miss the leading large-time behaviour of the
entanglement entropy!
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AS,

Mass Quench in Minimal Eg Toda Field Theor;

@ The Entanglement Entropy shows very slow growth and persistent
undamped oscillations for medium-large times.

@ These behaviours are not entirely surprising given existing results
[Horvath, Kormos & Takacs’18], but they are surprisingly robust.
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@ The Fourier transform gives us a

measurement of the one-particle
form factors and the mass ratios.

@ In this theory there are 8 particles

with distinct masses mg!

@ Numerics performed with iTEBD.
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