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1. Entanglement Dynamics

What is it? The time evolution of some measure of entanglement
after a quantum quench.

A system prepared initially in the ground state of a hamiltonian
H(λ0) time-evolves unitarily with a different hamiltonian H(λ).

For one-dimensional quantum systems and for a particular mea-
sure, the entanglement entropy S(t), a lot is understood

⇒ Entanglement Dynamics [Calabrese & Cardy’05’06]

Argument: Quasi-particle pairs propagate with opposite momenta
after the quench

S(t) = A t|t≤ `
2v

+ B `|t> `
2v

where A and B are theory-dependent, ` is the length of A, and v
the propagation velocity [Alba & Calabrese’17]
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2. Evidence and Further Studies

The quasi-particle picture has wide
support. [Fagotti & Calabrese’08]

For the XY chain

H = −
N∑

j=1

[
a σxj σ

x
j+1 + b σyj σ

y
j+1 +

h

2
σzj

]

with a+ b = 1/2.
For b = 0 Ising chain.
But other things can also happen...

For the Ising chain with both lon-
gitudinal and transversal magnetic
field showing confinement [Kormos,
Collura, Takács & Calabrese’16]

H = −J
N∑

j=1

[
σxj σ

x
j+1 + hxσ

x
j + hzσ

z
j

]

In our papers we studied the quench
of hz > 1 for hx = 0 (Ising mass
quench) and the quench of hx for
hz = 1 (E8 Toda mass quench).
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3. Scaling Limit (Revisited)

Throughout this course we have taken the scaling limit from spin
chain models to IQFT a a given.

This connection is important not only conceptually but also in a
practical sense because any numerical tests of QFT predictions
are generally done on discrete models in the scaling limit.

For the model in the last slide, this scaling limit can be made a
little more precise:

H = −J
N∑

j=1

[
σxj σ

x
j+1 + hxσ

x
j + hzσ

z
j

]

•

•

•

Free massive fermionsE8 field theory

QCP λ1 ∝ (1− hz)

λ2 ∝ hx

A = AQCP−λ1

∫
dxdt ε(x, t)−λ2

∫
dxdt σ(x, t)

Ising Field Theory

m0 := 2J |1−hz|, hx = 0, v := 2Ja

Minimal E8 Toda Field Theory
[Zamolodchikov’89]

hz = 1, λ2 ∝ hx, m0 := κλ
8
15
2
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4. Global Mass Quench and Entanglement Dynamics

Consider now a global mass
quench m0 7→ m.

The entropy is defined as usual:

Sn(t) =
log(TrA(ρnA))

1− n

S(t) = lim
n→1

Sn(t)

ρA = TrB(e−itH(m)|0〉〈0|eitH(m))

H(m) is the hamiltonian of the
theory with mass m.

|0〉 is the pre-quench ground state
of H(m0).

Consider the entanglement of two
semi-infinite regions:

As usual, the Rényi entropies
can be expressed in terms of the
one-point function of a BPTF:

Sn(t) =
log(ε2∆n

n〈0|T (0, t)|0〉n)

1− n

|0〉n is the pre-quench ground
state in the replica theory.

Now this is a dynamical one-point
function.
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5. Quench Perturbation Theory

We need a technique to compute dynamical one-point functions.

One possibility is to generalize the perturbation theory proposed
in [Delfino’14] to the BPTF.

We start with an action

A = AQCP − λ
∫
dxdt ϕ(x, t)

and consider a global quench whereby λ 7→ λ+ δλ at t = 0.

δλ is the small perturbative parameter.

Then, at first order, the post-quench state can be approximated by
expanding |0̃〉 = Sδλ |0〉, where Sδλ = T exp

(
−iδλ

∫
dxdt ϕ(x, t)

)
|0̃〉 = |0〉+δλ

∞∑
k=1

N∑
ak=1

2π

k!

∫ ∞
−∞

k∏
i=1

dpi

ei(θi)
δ(Ptot)

F
ϕ|a1...ak
k (θ1, . . . , θk)

∗

(2π)kEtot
|θ1 . . . θk|0〉+· · ·

where Etot =
∑
i ei(θi) and Ptot =

∑
i pi(θi) are the total energy

and momentum of the state.

The momentum constraint connects to the quasi-particle picture.
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6. Dynamic Expectation Values

From this formula it is then relatively easy to find the expectation
value of any local field.

Defining δ〈O〉 := 〈0̃|O(0, t)|0̃〉 − 〈0̃|O(0, 0)|0̃〉 we have

δ〈O〉 = δλ

∞∑

k=1

N∑

ak=1

2π

k!

∫ ∞

−∞

k∏

i=1

dpi
2πei(θi)

δ(Ptot)

Etot

×Re
(
F
ϕ|a1...ak
k (θ1, . . . , θk)∗FO|a1...akk (θ1, . . . , θk)e−itEtot

)
+ · · ·

δ〈T 〉n = n δλ

∞∑

k=1

N∑

ak=1

2π

k!

∫ ∞

−∞

k∏

i=1

dpi
2πei(θi)

δ(Ptot)

Etot

×Re
(
F
ϕ|a1...ak
k (θ1, . . . , θk)∗F T |a1...akk (θ1, . . . , θk)e−itEtot

)
+ · · ·

Once more form factors are the building blocks!

This is easily generalized to the branch point twist field.
[OC-A, Lencsés, Szécsényi & Viti’19]

In this case we only need form factors on one copy.
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7. Dynamics of Entanglement

The first few terms in the expansion read

δ〈T 〉n = δλn
N∑
a=1

2

m2
0,a

Fϕa F
T
a cos(mat)+

2δλn
N∑

a,b=1

∫ ∞
−∞

dpadpb

2πeaeb

δ(pa + pb)

ea + eb
Re

[
[Fϕab(θab)]

∗FTab(θab)e
−i(ẽa+ẽb)t

]
+· · ·+O(δ2λ)

δ〈T 〉n = δλn
N∑
a=1

2

m2
0,a

Fϕa F
T
a cos(mat)︸ ︷︷ ︸

UndampedOscillations

+

2δλn
N∑

a,b=1

∫ ∞
−∞

dpadpb

2πeaeb

δ(pa + pb)

ea + eb
Re

[
[Fϕab(θab)]

∗FTab(θab)e
−i(ẽa+ẽb)t

]
︸ ︷︷ ︸

DampedOscillations

+ · · ·

+ O(δ2λ)︸ ︷︷ ︸
Linear Growth of EE

This approach might lead us to miss the leading large-time behaviour of the
entanglement entropy!

But it gives us detailed knowledge of subleading oscillatory behaviours.

In particular, it predicts that non-vanishing one-particle form factors imply
persistent oscillations (at least for small quenches!)
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8. Mass Quench in Minimal E8 Toda Field Theory

The Entanglement Entropy shows very slow growth and persistent
undamped oscillations for medium-large times.

These behaviours are not entirely surprising given existing results
[Horvath, Kormos & Takacs’18], but they are surprisingly robust.
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The Fourier transform gives us a
measurement of the one-particle
form factors and the mass ratios.

In this theory there are 8 particles
with distinct masses ma!

Numerics performed with iTEBD.
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