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1. Operator Identification

Given a solution to the form factor equations, how do we know
what local field O does it correspond to?

There are several ways to do this: the constraints on form factor
asymptotics [see page 9 Lecture 2A] will at least narrow down the
possible solutions. Other factors are the spin and symmetries.

One of the most useful checks is provided by the ∆-sum rule
[Delfino, Simonetti & Cardy’96]

∆-Sum Rule

∆O = −
1

2⟨O⟩
∫

∞

0
dr r ⟨0∣Θ(r)O(0)∣0⟩

Θ is the trace of the stress-energy tensor.

We need to know the form factors of both fields. They must be
non-zero for at least some of the same particle numbers.

Then the ∆-sum rule gives us a direct connection between the
form factors of a local field and the conformal dimension of its
conformal (UV) counterpart [Zamolodchikov’89]
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2. Identifying Branch Point Twist Fields

In our original work [Cardy, OC-A & Doyon’08] we identified the
form factors of the branch point twist field using the ∆-sum rule,
symmetries (in the two models that we studied had Z2 symmetry
meant that only even form factors were non-zero) and a certain
idea of what the “simplest” solution should look like.

In general though, there can be other twist fields associated with
the same cyclic permutation symmetry (but they will have differ-
ent conformal dimension). Their form factors will satisfy exactly
the same form factor equations as T .

Today I want to discuss an example where the twist field form
factor equations naturally give two possible solutions. I will talk
about the massive Lee-Yang model, a massive perturbation of
the non-unitary Lee-Yang minimal model with c = − 22

5
[Lee &

Yang’52; Cardy & Mussardo’89].
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3. Lee-Yang Scattering Theory & CFT

The Lee-Yang minimal model is the simplest minimal model of
CFT. It contains two primary fields {1, φ}. It is non-unitary in
particular in the sense that ∆φ = −

1
5
< 0.

A massive perturbation of this theory (by the same field φ) gives
the massive Lee-Yang model, with S-matrix [Cardy & Mussardo’89]

S(θ) =
tanh 1

2
(θ + 2πi

3
)

tanh 1
2
(θ − 2πi

3
)
.

Despite the non-unitary underlying CFT, this S-matrix is per-
fectly nice. There is a single particle in the spectrum and it can
form a bound state with itself (hence the pole at θ = 2πi

3
).

This means that the two-particle form factor needs to have both
kinematic poles and a bound state pole [see Lecture 2A].
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4. A Family of Form Factors

We can include the bound state pole in the (re)definition of the
minimal form factor [see page 1 & 2 Lecture 2B]:
[Bianchini, OC-A & Doyon’15]

FTmin(θ) = P (θ) exp
⎡⎢⎢⎢⎢⎢⎣
∫

∞
0

dt

t

sinh t
3
sinh t

6
cosh ( t(nπ+iθ)

π
)

sinh(nt) cosh t
2

⎤⎥⎥⎥⎥⎥⎦

with P (θ) =
cosh θ

n−1

cosh θ
n−cos 2π

3n

.

Then, as before, we could write that

F T2 (θ) =
⟨T ⟩ sin π

n

2n sinh iπ+θ
2n

sinh iπ−θ
2n

F Tmin(θ)

F Tmin(iπ)

is the solution to the form factor equations.

However, this is not the most general solution that we can write
(although it is the simplest and most natural for many theories)

FO2 (θ) =
⟨O⟩ sin π

n

2n sinh iπ+θ
2n

sinh iπ−θ
2n

FOmin(θ)

FOmin(iπ)
+ κFOmin(θ)
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5. Lee-Yang Form Factors

Lee-Yang has no internal Z2 symmetry. This means that odd
particle number form factors are generally non-vanishing.

One way to fix the value of κ is to use the momentum space
clustering decomposition property [see page 10 Lecture 2A]

lim
θ→∞

FO2 (θ) = κ =
(FO1 )

2

⟨O⟩
.

and the bound state residue equation [see page 8 Lecture 2A]

−i lim
θ→ 2πi

3

(θ −
2πi

3
)FO2 (θ) = ΓFO1 with Γ = i

√

2
√

3 .

Combining these two equations we get a quadratic equation for
FO1 with solutions:

One-Particle Form Factors

FO±1 = −⟨O±⟩Γ
cos π

3n
± 2 sin2 π

6n

2n sin π
3n
f±(

2πi
3
, n)

with f±(θ, n) ∶=
FO±min(θ)

P (θ)
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6. Identifying Branch Point Twist Fields

Looking again at these solutions, the question is what kind of
branch point twist fields are the fields O±?

One-Particle Form Factors

FO±1 = −⟨O±⟩Γ
cos π

3n
± 2 sin2 π

6n

2n sin π
3n
f±(

2πi
3
, n)

with f±(θ, n) ∶=
FO±min(θ)

P (θ)

There are some clues we can get without much work. We know
that F T1 = 0 at n = 1. We see that this holds for O−!

For O+ the form factor is not zero at n = 1. It is:

lim
n→1

FO+1

⟨O+⟩
=
Fφ1
⟨φ⟩

=
i
√

2
4
√

3f( 2πi
3
,1)

this was computed in [Zamolodchikov’91]

This strongly suggests that O− = T and O+ =∶ T φ ∶.
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7. Composite Branch Point Twist Fields

The field O+ =∶ T φ ∶ is an example of a composite branch point
twist field. Recall that we saw the conformal dimensions of these
fields in Lecture 1B:

Branch Point Twist Field Conformal Dimension(s)

∆T =
c

24
(n −

1

n
) ∆∶T φ∶ =

ceff

24
(n −

1

n
)

[Knizhnik’87; Kac & Wakimoto’90; Bouwknegt’96; Borisov et al.’98]

Where ceff = c − 24∆φ. In this case c,∆φ < 0 but ceff > 0 so the
field ∶ T φ ∶ is the BPTF with the least positive dimension.

We can make sense of this field as corresponding to the leading
field in the conformal OPE of T and φ in a replica CFT:.

∶ T φ ∶= n2∆−1 lim
x→y
∣x − y∣2∆φ(1−

1
n )

n

∑
j=1

T (x)φj(y)

φj is the field φ in copy j and the normalization ensures conformal
normalization of the two point function of ∶ T φ ∶.
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8. Composite BPTFs and Entanglement

This kind of field appeared in the context of entanglement in
[OC-A, Doyon & Levi’11; Levi’12]

Later on we proposed a measure of entanglement for non-unitary
CFT where, for instance:

n⟨0∣T (x1)T
†
(x2)∣0⟩n ↦

n⟨0∣ ∶ T φ ∶ (x1) ∶ T φ ∶
† (x2)∣0⟩n

⟨0∣φ(x1)φ(x2)∣0⟩n

we showed that this mapping gives an entanglement entropy where
all formulae hold as before with the replacement c↦ ceff .
[Bianchini, OC-A, Doyon, Levi & Ravanini’15]

There is some evidence in
lattice models [Bianchini
& Ravanini’16; Couvreur,
Jacobsen & Saleur’16]
that this works, but
also some people that
disagree [Dupic, Estienne

& Ikhlef’17] /
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9. Composite Twist Fields More Generally

This example gives an idea of how the form factor programme
connects to the identification of the operator content of IQFT.

This is not a new problem and there are many beautiful papers
where this is addressed, for example [Cardy & Mussardo’90] for
the Ising model, and [Koubek & Mussardo’93] for sinh-Gordon or
even [OC-A & Fring’01] for the Homogeneous sine-Gordon model.

An interesting extension of some of these ideas is to consider fields
∶ T φ ∶ where φ is also a twist field. For instance in the Ising model,
one could look at ∶ T σ ∶ and ask what are its form factors.

If φ is a twist field, then ∶ T φ ∶ will satisfy a new set of form factor
equations that incorporate both symmetries. These were written
for the first time in [Horváth & Calabrese’20] and the fields have
been named Symmetry Resolved Twist Fields.

A new measure of entanglement, the symmetry resolved entangle-
ment [Goldstein & Sela’18] can be computed using these fields.
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for branch point twist fields….
WATCH THIS SPACE!
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