Form Factors of Branch Point Twist Fields: Exercises

1. Going back to the lecture notes, show that if the S-matrix has an integral representation of the form,

$$
S_{a b}(\theta)=\exp \left[\int_{0}^{\infty} \frac{d t}{t} f_{a b}(t) \sin \frac{\theta t}{i \pi}\right],
$$

then the function

$$
F_{\min }^{\mathcal{T} \mid a b}(\theta)=\exp \left[\int_{0}^{\infty} \frac{d t}{t} \frac{f_{a b}(t)}{\sinh (n t)} \sin ^{2}\left(\frac{i t}{2}\left(n+\frac{i \theta}{\pi}\right)\right)\right]
$$

satisfies

$$
F_{\min }^{\mathcal{T} \mid a b}(\theta)=S_{a b}(\theta) F_{\min }^{\mathcal{T} \mid b a}(-\theta)=F_{\min }^{\mathcal{T} \mid b a}(-\theta+2 \pi i n),
$$

Assume parity invariance, that is $S_{a b}(\theta)=S_{b a}(\theta)$.
2. Show that the two-particle form factor of particles in the same copy

$$
F_{2}^{\mathcal{T} \mid a b}(\theta)=\frac{\langle\mathcal{T}\rangle \sin \frac{\pi}{n}}{2 n \sinh \left(\frac{i \pi-\theta}{2 n}\right) \sinh \left(\frac{i \pi+\theta}{2 n}\right)} \frac{F_{\min }^{\mathcal{T} \mid a b}(\theta)}{F_{\min }^{\mathcal{T} \mid a b}(i \pi)}
$$

satisfies Watson's equations as well as the (first) kinematic residue equation:

$$
-i \lim _{\theta \rightarrow i \pi}(\theta-i \pi) F_{2}^{\mathcal{T} \mid a b}(\theta)=F_{0}^{\mathcal{T}}:=\langle\mathcal{T}\rangle
$$

3. Prove the identities given in the penultimate page of Lecture 2B.
4. By computing the analytic continuation in n of $h(\theta, n)$, compute

$$
\lim _{n \rightarrow 1} \frac{\partial h}{\partial n} \quad \text { with } \quad h(\theta, n):=\sum_{i=1}^{n} \sum_{j=1}^{n} h_{i j}(\theta, n)
$$

where $h_{i j}(\theta):=F_{2}^{\mathcal{T} \mid(a, i)(a, j)}(\theta)$. Check your result numerically for the free massive boson and fermion which have $F_{\min }^{\mathcal{T} \mid 11}(\theta)=1$ and $F_{\min }^{\mathcal{T} \mid 11}(\theta)=-i \sinh \frac{\theta}{2 n}$, respectively for particles in the same copy (note that there is a single particle species in these theories). Hint: Use the cotangent trick as we saw in Lecture 3A.

