
Form Factors of Branch Point Twist Fields: Exercises

1. Going back to the lecture notes, show that if the S-matrix has an integral representation
of the form,
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satisfies
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Assume parity invariance, that is Sab(θ) = Sba(θ).

2. Show that the two-particle form factor of particles in the same copy
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satisfies Watson’s equations as well as the (first) kinematic residue equation:
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3. Prove the identities given in the penultimate page of Lecture 2B.

4. By computing the analytic continuation in n of h(θ, n), compute
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where hij(θ) := F
T |(a,i)(a,j)
2 (θ). Check your result numerically for the free massive

boson and fermion which have F
T |11
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2n
, respectively for

particles in the same copy (note that there is a single particle species in these theories).
Hint: Use the cotangent trick as we saw in Lecture 3A.
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