
Twist Field Form Factors: Solutions to Exercises

1. Minimal Form Factors
This is a very simple exercise. The first identity F

T |ab
min (θ) = Sab(θ)F

T |ba
min (−θ) holds if
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Since sin2(i(x+ y)) = sin2(i(x− y))− sinh(2x) sinh(2y) we have that

sin2

(
it

2

(
n− iθ

π

))
= sin2

(
it

2

(
n+

iθ

π

))
− sinh (nt) sinh

tθ

π

which proves the identity. Similarly, to prove that F
T |ab
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min (−θ + 2πin) we

need to show that
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so it also holds. For n = 1 this also gives us the construction procedure for the minimal
form factors of more standard local fields. Here we assumed that fab(θ) = fba(θ) which
is equivalent to parity invariance of the S-matrix. This is not true for all theories but
for most.

2. Two Particle Form Factor
To check Watson’s equations we need to check that F

T |(a,j)(b,j)
2 (θ) := gab(θ) satisfies:

gab(θ) = Sab(θ)gba(−θ) = gab(−θ + 2πin).

The equation gab(θ) = gab(−θ + 2πin) holds by construction because it is satisfied by
the minimal form factor (by definition) and the rest of the formula involves a function
which is invariant under 2πin shifts of θ. The equation gab(θ) = Sab(θ)gba(−θ) holds
also by construction because the minimal form factor satisfies it and the rest of the
function is even in θ.

To check the kinematic residue equation we need to verify that

lim
θ→iπ

(θ − iπ)gab(θ) = iF T0 = i〈T 〉.

This can be easily checked directly from the formula.
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3. Form Factor Relations
The identity:

F
T |(a,i)(b,j)
2 (θ) = F

T †|(a,n−i)(b,n−j)
2 (θ),

is a consequence of the definition of the two twist fields. They implement the opposite
cyclic permutation symmetries.

The formula,
F
T |(a,i)(b,i+k)
2 (θ) = F

T |(a,j)(b,j+k)
2 (θ),

follows from the fact that all copies are identical, so form factors where all the copy
numbers are just shifted by a common value must be identical.

The relation,
F
T |(a,1)(b,j)
2 (θ) = F

T |(b,1)(a,1)
2 (2π(j − 1)i− θ),

is a consequence of Watson’s equations. If j = 1 the equation does not hold so we
must have j > 1. By crossing we have

F
T |(a,1)(b,j)
2 (θ) = F

T |(b,j−1)(a,1)
2 (−θ + 2πi),

Using the first Watson equation and assuming j−1 6= 1 (if j = 2 the proof is finished!)
we can write that

F
T |(b,j−1)(a,1)
2 (−θ + 2πi) = F

T |(a,1)(b,j−1)
2 (θ − 2πi)

because the S-matrix is that of n disconnected copies so S(a,i)(b,j)(θ) = (Sab(θ))
δij .

Repeating the same steps once more we find that

F
T |(a,1)(b,j−1)
2 (θ − 2πi) = F

T |(b,j−2)(a,1)
2 (−θ + 4πi) = F

T |(a,1)(b,j−2)
2 (θ − 4πi).

Eventually, after j − 1 iterations we will find:

F
T |(a,1)(b,j)
2 (θ) = F

T |(b,1)(a,1)
2 (−θ + 2πi(j − 1)),

as we wanted to prove.

The fourth relation follows from the previous ones:

F
T †|(a,1)(b,j)
2 (θ) = F

T |(a,n−1)(b,n−j)
2 (θ) = F

T |(a,1)(b,n+2−j)
2 (θ) = F

T |(b,1)(a,1)
2 (−θ+2πi(n+2−j−1)),

= F
T |(b,1)(a,1)
2 (−θ + 2πi(1− j) + 2πin) = F

T |(a,1)(b,1)
2 (θ + 2πi(j − 1)),

the third identity follows from the invariance under global shift of copies. So we
shift both copies by 2 and then use the property that n + j ≡ j because of cyclic
permutation symmetry. The fifth relation follows again from Watson’s equations (2πin-
shift property).

The final relation follows from the same properties now generalized to a larger number
of particles. For instance consider the three-particle form factor in a theory with n = 3:

F T |(a,3)(b,2)(c,1)(θ1, θ2, θ3) = F T |(c,1)(b,2)(a,3)(θ3, θ2, θ1) = F T |(b,2)(a,3)(c,2)(θ2, θ1, θ3 − 2πi)
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= F T |(b,2)(c,2)(a,3)(θ2, θ3 − 2πi, θ1) = F T |(c,2)(a,3)(b,3)(θ3 − 2πi, θ1, θ2 − 2πi)

= F T |(a,3)(b,3)(c,3)(θ1, θ2 − 2πi, θ3 − 4πi) = F T |abc(θ1, θ2 − 2πi, θ3 − 4πi) .

All the identities follow from Watson’s equations. This looks a bit different from the
formula I wrote but recall that the form factor only depends on rapidity differences so
one can add a constant to all rapidities without changing the form factor. This implies
that

F T |abc(θ1, θ2 − 2πi, θ3 − 4πi) = F T |abc(θ1 + 4πi, θ2 + 2πi, θ3),

which is the formula given in my lecture.

4. Analytic Continuation through the Cotangent Trick
We have that

h(θ, n) =
n∑

i,j=1

hij(θ, n).

Because all copies are identical we have that

h(θ, n) =
n∑

i,j=1

hij(θ, n) = n
n∑
j=1

h1j(θ, n),

and due to the monodromy properties of the form factors, every two-particle form
factor can be related to h11(θ, n) by employing Watson’s equations:

n
n∑
j=1

h1j(θ, n) = n(h11(θ, n)− h11(−θ, n)) + n
n∑
j=1

h11(−θ + 2πi(j − 1), n)

= n(h11(θ, n)− h11(−θ, n)) + n
n−1∑
j=0

h11(−θ + 2πij, n).

In order to compute the derivative w.r.t. n of such a sum we need to get rid of the
sum in n. This may be achieved through the well-known cotangent trick which we also
used in the paper J. L. Cardy, O. A. Castro-Alvaredo and B. Doyon, J. Stat. Phys.
(2008) 130 129-168. The idea is to replace the sum by an integral of the form:

1

2πi

∮
π cot(πz)s(θ, z)dz,

where s(θ, z) = h11(−θ + 2πiz, n) and the integration contour is a rectangle in the
complex plane with corners at (iL − ε,−iL − ε, n + iL − ε, n − iL − ε) with ε � 1.
The ε ensures that the j = 0 term in the sum is included. The generic form of the
two-particle form factors is

h11(θ, n) =
〈T 〉 sin π

n

2n sinh iπ+θ
2n

sinh iπ−θ
2n

f(θ, n)

f(iπ, n)
,

where f(θ) is a model-dependent minimal form factor (assume that we look at a theory
with a single particle type, such a free Boson or a free Fermion). As we can see the form
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factor has kinematic poles at θ = iπ and θ = iπ(2n − 1). It is also clear that s(θ, z)
decays exponentially as =z → ±∞ and the contributions from the horizontal segments
in the rectangle will therefore vanish as L→∞. Thanks to the quasi-periodicity of the
integrand, s(θ, z+ n) = s(−θ,−z) = S(θ− 2πiz)s(θ, z), where S(θ) is the two-particle
scattering matrix, the contributions from the vertical pieces amounts to

lim
ε→0

1

2πi

∫ i∞

−i∞
(S(θ − 2πi(z − ε))− 1)π cot(π(z − ε))s(θ, z − ε)dz

This will give a non-vanishing contribution for all theories (except the free Boson).

The sum of the residues of the poles of the cotangent function inside the contour
reproduces the original sum. However, there are additional poles at z = 1

2
+ θ

2πi
and

z = n− 1
2

+ θ
2πi

inside the contour which correspond to the kinematic poles of the form
factor. The sum of the residues associated with these poles gives:

iπ cot

(
π

2
+
θ

2i

)
− iπ cot

(
πn− π

2
+
θ

2i

)
= 0.

The sum above is zero for n integer as the cotangent function is π periodic. This means
that the integral (4) is in fact the only non-vanishing contribution in this case and it
is obviously model-dependent.

Therefore the analytically-continued sum f̃(θ, n) is given by

h̃(θ, n) = n(h11(θ, n)− h11(−θ, n))

+ lim
ε→0

n

2πi

∫ i∞

−i∞
(S(θ − 2πi(z − ε))− 1)π cot(π(z − ε))s(θ, z − ε)dz

= n(h11(θ, n)− h11(−θ, n))

− lim
ε→0

n

4πi

∫ ∞
−∞

(S(θ − β + iε)− 1) coth
β − iε

2
h11(−θ + β − iε, n)dβ, (1)

where we changed variables to β = 2πiz and replaced 2πε → ε. We can now differ-
entiate w.r.t. n and take the n → 1 limit. The result depends on the minimal form
factor, so it is model-dependent. Note that h11(θ, 1) = 0 by construction, so some of
the terms are directly vanishing. The non-trivial contributions come from

∂

∂n
h̃(θ, n) = n

∂

∂n
(h11(θ, n)− h11(−θ, n))

− lim
ε→0

n

4πi

∫ ∞
−∞

(S(θ − β + iε)− 1) coth
β − iε

2

∂

∂n
h11(−θ + β − iε, n)dβ.

The first term gives

lim
n→1

∂

∂n
(h11(θ, n)− h11(−θ, n)) = − π

2 cosh2 θ
2

(
f(θ, 1)− f(−θ, 1)

f(iπ, 1)

)
.
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The second contribution will come from:

∂

∂n
h11(−θ + β, n) = − π

2 cosh2 θ−β
2

(
f(−θ + β, 1)

f(iπ, 1)

)
.

Free Fermion Case
For the free Fermion we know that

f(θ, n) = −i sinh
θ

2n
.

Formula (1) can be easily checked numerically against the original sum and there is
full agreement for any θ and integer values of n. The derivative simplifies to

lim
n→1

∂

∂n
h̃(θ, n) =

iπ tanh θ
2

cosh θ
2

+ lim
ε→0

1

4

∫ ∞
−∞

coth
β − iε

2

tanh β−iε−θ
2

cosh β−iε−θ
2

dβ. (2)

Note that in the integral above, the integration variable β is shifted by a small amount
−iε as in the original contour we wanted to include the value j = 0 in the sum. If we
take this into account it can actually be computed explicitly and the final answer is

lim
n→1

∂

∂n
h̃(θ, n) =

iπ tanh θ
2

2 cosh θ
2

+
π

2
sech2 θ

2
. (3)

Free Boson Case
For the free Boson we know that

f(θ, n) = 1.

The S-matrix is 1 so there is no contribution from the integral and no contribution
from the term f(θ, 1)− f(−θ, 1) so we get

lim
n→1

∂

∂n
f̃(θ, n) = 0.
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